These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of 1,10-phenanthroline on the binding of activated rat hepatic glucocorticoid-receptor complexes to deoxyribonucleic acid-cellulose. Author: Schmidt TJ, Sekula BC, Litwack G. Journal: Endocrinology; 1981 Sep; 109(3):803-12. PubMed ID: 7262022. Abstract: 1,10-Phenanthroline, a metal ion chelator, inhibits the binding of previously activated (25 C for 30 min) rat hepatic [3H]triamcinolone acetonide (3H-labeled 9-fluoro-11 beta, 21-dihydroxy-16 alpha, 17-1-[1-metylethylidenebis(oxy)]pregna-1,4-diene-3,20-dione ([3H]TA)-receptor complexes to DNA-cellulose. The observed inhibition increases as the temperature of the preincubation with chelator is increased from 0 to 25 C. Fifty percent of the maximal inhibition (greater than 90%) detected at 25 C is achieved with 1 mM 1,10-phenanthroline. The observed inhibition is not the consequence of DNA degradation by 1,10-phenanthroline-Cu2+ complexes, since preincubation of activated cytosol with neocuproine (2,9-dimethyl-1,10-phenanthroline), a potent Cu2+ chelator, fails to block the subsequent inhibition of DNA-cellulose binding by 1,10-phenanthroline. The failure of other chelators which complex siilar metal ions (alpha, alpha'-dipyridyl,8-hydroxyquinoline, 2,2',2"-tripyridine, EDTA, EGTA, and Na azide) to inhibit DNA-cellulose binding suggests that the effectiveness of 1,10-phenanthroline does not result from removal of a required free metal ion(s) but, rather, from a specific interaction with a metal ion(s) which may be located within the activated receptor protein. The observed inhibition is dependent on the metal chelating properties of 1,10-phenanthroline, since preincubation with several divalent metal cations (Zn2+, Co2+, and Ni2+) which are known to be chelated by this compound block its subsequent inhibitory effect. Ferroin (1,10-phenanthroline-ferrous sulfate complex) and 1,7-phenanthroline (nonchelating isomer) also fail to inhibit DNA-cellulose binding. The inhibition mediated by 1,10-phenanthroline persists after gel filtration, suggesting that 1,10-phenanthroline associated with a macromolecule is the effective form of the inhibitor, rather than free 1,10-phenanthroline. Finally, 1,10-phenanthroline appears to interact directly with activated [3H]TA-receptor complexes, since it alters their net charge and results in their elution from DEAE-cellulose at a salt concentration characteristic of unactivated complexes. Collectively, the data suggest that the activated [3H]TA-receptor complex is a metalloprotein and that the metal ion(s) may be associated directly with the DNA-binding site or may regulate this site indirectly through an allostreic mechanism.[Abstract] [Full Text] [Related] [New Search]