These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Submitochondrial location of ruthenium red-sensitive calcium-ion transport and evidence for its enrichment in a specific population of rat liver mitochondria.
    Author: Bygrave FL, Heaney TP, Ramachandran C.
    Journal: Biochem J; 1978 Sep 15; 174(3):1011-9. PubMed ID: 728072.
    Abstract:
    1. Seven fractions sedimenting at between 3000 and 120000g-min were prepared from a rat liver homogenate by differential centrifugation in buffered iso-osmotic sucrose. The following measurements were carried out on each of these fractions: Ruthenium Red-sensitive Ca(2+) transport in the absence and in the presence of P(i) as well as in the presence of N-ethylmaleimide to prevent P(i) cycling, succinate-supported respiration in the absence and in the presence of ADP, the DeltaE and -59 DeltapH components of the protonmotive force, cytochrome oxidase, uncoupler-stimulated adenosine triphosphatase, alpha-glycerophosphate dehydrogenase, P(i) content and the effect on the ;resting' rate of respiration of repeated additions of a fixed Ca(2+) concentration. 2. Ca(2+) transport either in the presence or in the absence of added P(i) and in the presence of N-ethylmaleimide exhibits significantly higher rates in the fraction sedimenting at 8000g-min. By contrast, respiration in the presence or in the absence of added ADP and the values for DeltaE and -59 DeltapH were similar in those fractions sedimenting between 4000 and 20000g-min, indicating that the driving force for Ca(2+) transport was similar in each of these fractions. 3. Experiments designed to determine the capacity of the individual fractions for Ca(2+), as measured by the effect of repeated additions of Ca(2+) on the resting rate of respiration, showed that fraction 2, i.e. that sedimenting at 8000g-min, also exhibited the greatest tolerance towards the uncoupling action of the ion. 4. Of the three enzyme activity profiles, only that of alpha-glycerophosphate dehydrogenase was similar to that of Ca(2+) transport. Because previous workers have assigned this enzyme to loci in the inner peripheral membrane [Werner & Neupert (1972) Eur. J. Biochem.25, 379-396], it is concluded that the Ruthenium Red-sensitive Ca(2+)- transport system also is located in this domain of the inner membrane. The relation of these findings to the mechanisms of mitochondrial Ca(2+) transport and the biogenesis of mitochondria is discussed.
    [Abstract] [Full Text] [Related] [New Search]