These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temperature and surface forces in excised rabbit lungs. Author: Inoue H, Inoue C, Hildebrandt J. Journal: J Appl Physiol Respir Environ Exerc Physiol; 1981 Oct; 51(4):823-9. PubMed ID: 7298424. Abstract: This study was designed to determine whether the effects of temperature on lung pressure-volume (PV) curves were influenced by the state of the surface lining at the time of warming or cooling. In successive runs, temperature was varied (21, 37, or 5 degrees C) with lung gas volume fixed at either 55% total lung capacity (TLC) or 0% TLC (degassed), followed by PV curves to TLC. Peak inflation volume in a given lung was made identical at all temperatures. The starting pressure at 55% TLC remained fixed during temperature changes, whereas peak pressure ranged from 24 cmH2O at 37 degrees C to 40 cmH2O at 5 degrees C. However, below 75% TLC all deflation curves differed by less than 1 cmH2O, and the lowest recoil occurred at 5 degrees C. At 0% TLC, a similar dispersion in pressures appeared at TLC. However, on deflation, recoil at 37 degrees C was always less than at 21 degrees C, whereas at 5 degrees C a drastic shift to the right occurred. First-cycle hysteresis and midinflation pressure also increased with cooling. Thus, with cooling, the spreading and adsorption of surfactant during lung expansion are inhibited, and during deflation aggregation is greatly facilitated, accounting for the above results. When an already spread surface is cooled, then expanded, as at 55% TLC, the more rigid lining causes some rise in peak pressure at TLC but little change elsewhere. However, when lungs are degassed and then cooled, the aggregated surfactant spreads extremely poorly, leading to greatly increased recoil throughout the cycle. Changes in pressure at TLC may depend considerably on tissue effects.[Abstract] [Full Text] [Related] [New Search]