These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The use of potent inhibitors of alkaline phosphatase to investigate the role of the enzyme in intestinal transport of inorganic phosphate. Author: Shirazi SP, Beechey RB, Butterworth PJ. Journal: Biochem J; 1981 Mar 15; 194(3):803-9. PubMed ID: 7306025. Abstract: In an investigation of the link between Pi transport and alkaline phosphatase in mammalian small intestine, the characteristics of Pi uptake by brush-border membrane vesicles prepared from rat intestine were compared with the properties of the tissue alkaline phosphatase. The NaCl-dependent Pi uptake had a Km of 0.1 mM at pH 7.5 and was inhibited totally by 1 mM-arsenate and by 1 mM-vanadate. These compounds are also potent competitive inhibitors of the alkaline phosphatase activity of the vesicles, with Ki values less than 5 microM at pH 7.5. When the effect on Pi uptake of several other potent inhibitors of alkaline phosphatase, including phosphonates and phosphate analogues, was tested, however, it was found that there was little, if any, inhibition of transport under conditions in which the inhibition of phosphatase activity was total. Incubation of the vesicles for 20 min with oxidized adenosine 5'-[beta gamma-imido]triphosphate followed by rapid gel filtration to remove the inhibitor resulted in an irreversible loss of phosphatase activity, but left Pi transport unimpaired. Conversely, a similar prolonged incubation with adenosine 5'-[beta-thio]diphosphate or adenosine 5'-[gamma-thio]triphosphate had no effect on alkaline phosphatase activity but resulted in a permanent partial loss of transport capability. The failure to demonstrate an inhibition of Pi transport resulting from inhibition of alkaline phosphatase and the different responses of enzymic activity and Pi transport to irreversible inhibition make it very unlikely that the enzyme is directly involved in the transport system.[Abstract] [Full Text] [Related] [New Search]