These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transport of Ca2+ and Na+ across the chromaffin-granule membrane. Author: Phillips JH. Journal: Biochem J; 1981 Oct 15; 200(1):99-107. PubMed ID: 7332540. Abstract: Bovine chromaffin-granule ghosts accumulate 45Ca2+ in a temperature- and osmotic-shock-sensitive process; the uptake is saturable, with Km 38 microM and Vmax. 28 nmol/min per mg at 37 degrees C. Entry occurs by exchange with Ca2+ bound to the inner surface of the membrane. It is inhibited non-competitively by Na+, La3+ and Ruthenium Red (Ki 10.7 mM, 7 microM and 2 microM respectively), and competitively by Mg2+ (ki 0.9 mM). Uptake was not stimulated by ATP. Na+ induces Ca2+ efflux; Ca2+ can re-enter the ghosts by a process of Ca2+/Na+ exchange. La3+ inhibits Ca2+ efflux during Ca2+-exchange, and Ca2+ efflux induced by Na+, suggesting that Ca2+ uptake and efflux, and Ca2+/Na+ exchange, are catalysed by the same protein. Na+ enters ghosts during CA2+ efflux, but the kinetics of its entry are not exactly similar to the kinetics of Ca2+ efflux. Initially 1-2 Na+ enter per Ca2+ lost, but at equilibrium 3-4 Na+ have replaced each Ca2+. There is no evidence that either Ca2+ uptake or efflux by Ca2+/Na+ exchange is electrogenic, suggesting that the stoichiometry of exchange is Ca2+/2Na+. This exchange reaction may have a role in depleting cytoplasmic Ca2+ after depolarization-induced Ca2+ entry through the adrenal medulla plasma membrane; there is some evidence that there may be an additional entry mechanism for Na+ across the granule membrane.[Abstract] [Full Text] [Related] [New Search]