These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Importance of experimental conditions in evaluating the malonyl-CoA sensitivity of liver carnitine acyltransferase. Studies with fed and starved rats.
    Author: McGarry JD, Foster DW.
    Journal: Biochem J; 1981 Nov 15; 200(2):217-23. PubMed ID: 7340831.
    Abstract:
    The experiments reconfirm the powerful inhibitory effect of malonyl-CoA on carnitine acyltransferase I and fatty acid oxidation in rat liver mitochondria (Ki 1.5 microM). Sensitivity decreased with starvation (Ki after 18 h starvation 3.0 microM, and after 42 h 5.0 microM). Observations by Cook, Otto & Cornell [Biochem. J. (1980) 192, 955--958] and Ontko & Johns [Biochem. J. (1980) 192, 959--962] have cast doubt on the physiological role of malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. The high Ki values obtained in the cited studies are shown to be due to incubation conditions that cause substrate depletion, destruction of malonyl-CoA or generation of excessively high concentrations of unbound acyl-CoA (which offsets the competitive inhibition of malonyl-CoA towards carnitine acyltransferase I). The present results are entirely consistent with the postulated role of malonyl-CoA as the primary regulatory of fatty acid synthesis and oxidation in rat liver.
    [Abstract] [Full Text] [Related] [New Search]