These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of styrene and acetone with drug biotransformation enzymes in rat liver.
    Author: Vainio H, Zitting A.
    Journal: Scand J Work Environ Health; 1978; 4 Suppl 2():47-52. PubMed ID: 734416.
    Abstract:
    In the presence of hepatic microsomes, styrene produced a type I difference spectrum, which demonstrates that styrene binds to the catalytic site of ferricytochrome P-450. A comparison of the binding parameters for the interaction of styrene with noninduced, phenobarbital-induced, and 3-methylcholanthrene-induced microsomes indicated that styrene is predominantly bound by cytochrome P-450 and not by cytochrome P-448. Inhalation exposure to a mixture of acetone (1,000 ppm, 6 h/d) and styrene (300 ppm, 6 h/d) for 5 d caused a distinct decrease in hepatic free nonprotein sulfhydryl groups. This decrease could be observed both with and without phenobarbital treatment. Acetone inhalation alone also enhanced ethoxycoumarin O-deethylase activity in rats without pretreatments. Acetone inhalation also increased the cytochrome P-450 content of liver microsomes, but it had no effect on NADPH cytochrome c reductase or epoxide hydratase activity. Combined exposure to styrene and acetone enhanced NADPH cytochrome c reductase activity in nonphenobarbital-treated rats, but no effect was seen in the phenobarbital-treated animals. Phenobarbital treatment of animals can greatly modify the biotransformation and toxicity of styrene, phenobarbital inducible P-450 hemoprotein playing a predominant role in its metabolism. Simultaneous inhalation exposure to acetone also interacts with the metabolism of styrene.
    [Abstract] [Full Text] [Related] [New Search]