These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fibroblast receptor for lysosomal enzymes mediates pinocytosis of multivalent phosphomannan fragment. Author: Fischer HD, Natowicz M, Sly WS, Bretthauer RK. Journal: J Cell Biol; 1980 Jan; 84(1):77-86. PubMed ID: 7350171. Abstract: Mild acid hydrolysis of phosphomannan secreted by the yeast hansenula holstii (NRRL Y- 2448) produces two phosphomannyl fragments which differ strikingly in their potency as inhibitors of pinocytosis of human beta-glucuronidase by human fibroblasts. The larger molecular weight polyphosphomonoester fragment is 100,000-fold more potent an inhibitor of enzyme uptake than the smaller penta-mannosyl-monophosphate fragment. Binding to attached fibroblasts at 3 degrees C was much greater with the polyphosphomonoester fragment than with the pentamannosyl-monophosphate. The larger molecular weight fragment was also subject to adsorptive pinocytosis and was taken up by fibroblasts at a rate 30- fold greater than the rate of uptake of pentamannosyl-monophosphate. Evidence that the polyphosphomonoester fragment is taken up by the phosphomannosyl-recognition system that mediates uptake of lysosomal enzymes includes: (a) its pinocytosis is inhibited by the same compounds that competitively inhibit enzyme pinocytosis (mannose-6-phosphate and phosphomannan from saccharomyces cerevisiae mutant mnn-1); (b) alkaline phosphatase treatment greatly reduces its susceptibility to pinocytosis; (c) its pinocytosis is competitively inhibited by high-uptake human beta-glucuronidase; and (d) this inhibition by high-uptake enzyme is dramatically reduced by prior treatment of the enzyme with alkaline phosphatase or endoglycosidase-H. Endoglycosidase-H treatment human beta-glucuronidase dramatically reduced its susceptibility to pinocytosis by fibroblasts. The phosphomannosyl components of high- uptake enzyme released by endoglycosidase-H treatment were much less effective inhibitors of polyphosphomonoester pinocytosis than when present on the phosphomannyl-enzyme. These results suggest that high-uptake acid hydrolases may be polyvalent ligands analogous to the polyphosphomonoester mannan fragment whose pinocytosis depends on interaction of more than one phospho-mannosyl recognition marker with pinocytosis receptors on fibroblasts.[Abstract] [Full Text] [Related] [New Search]