These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pathogenesis of renal hyperchloremic acidosis resulting from dietary potassium restriction in the dog: role of aldosterone.
    Author: Hulter HN, Sebastian A, Sigala JF, Licht JH, Glynn RD, Schambelan M, Biglieri EG.
    Journal: Am J Physiol; 1980 Feb; 238(2):F79-91. PubMed ID: 7361893.
    Abstract:
    In dogs dietary K+ restriction (16 days) results in diminished urinary net acid excretion (NAE) and systemic hyperchloremic metabolic acidosis (sigma delta NAE, -200 meq; delta[HCO3-]p, -2.9 +/- 0.3 meq/liter, P less than 0.05). Urinary aldosterone (aldo) excretion decreased by 34 +/- 3% (P less than 0.001) and metabolic clearance rate of aldo increased by 80 +/- 17% (P less than 0.02) during K+ restriction. Daily subcutaneous injection of a small amount of exogenous aldo (20 micrograms) during K+ restriction significantly attenuated the reduction in NAE (sigma delta NAE -51 vs. -200 meq, P less than 0.05) without raising plasma aldo concentrations to levels greater than control. These findings suggest that hypoaldosteronism induced by potassium depletion is at least in part the cause of the observed renal tubular acidosis. In adrenalectomized (ADX) dogs maintained on fixed mineralocorticoid and glucocorticoid replacement (aldo dose 60 micrograms/day), K+ restriction resulted in a significant degree of renal metabolic acidosis (delta[HCO3-]p, -1.4 +/- 0.3 meq/liter, P less than 0.01). In these ADX dogs, the exogenous supply of aldo was fixed but hypoaldosteronism may have developed owing to increased metabolic clearance rate of aldo caused by dietary K+ depletion. When mineralocorticoid replacement was withheld in ADX dogs, the steady-state degree of renal metabolic acidosis was no more severe in animals with preexisting dietary K+ depletion (16 days) than in the same animals when mineralocorticoid was withheld without preexisting K+ depletion. Thus, when neither endogenous nor exogenous aldo is present, K+ depletion does not result in a renal acidosis-producing effect that exacerbates that of aldo deficiency. The results of these studies suggest that the reduction in NAE and consequent metabolic acidosis induced by dietary K+ depletion is at least in part a consequence of aldo deficiency, and provide no evidence of an additional defect in acidification not caused by aldo deficiency.
    [Abstract] [Full Text] [Related] [New Search]