These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake. Author: Burckhardt G, Kinne R, Stange G, Murer H. Journal: Biochim Biophys Acta; 1980 Jun 20; 599(1):191-201. PubMed ID: 7397147. Abstract: The uptake of L-glutamic acid into brush-border membrane vesicles isolated from rat renal proximal tubules is NA+-dependent. In contrast to Na+-dependent uptake of D-glucose, pre-equilibration of the vesicles with K+ stimulates L-glutamic acid uptake. Imposition of a K+ gradient ([Ki+] > [Ko+]) further enhances Na+-dependent L-glutamic acid uptake, but leaves K+-dependent glucose transport unchanged. If K+ is present only at the outside of the vesicles, transport is inhibited. Intravesicular Rb+ and, to a lesser extent, Cs+ can replace intravesicular K+ to stimulate L-glutamic acid uptake. Changes in membrane potential incurred by the imposition of an H+-diffusion potential or anion replacement markedly affect Na+-dependent glutamic acid uptake only in the presence of K+. Experiments with a potential-sensitive cyanine dye also indicate that, in the presence of intravesicular K+ a charge movement is involved in Na+-dependent transport of L-glutamic acid. The data indicate that Na+-dependent L-glutamic acid transport can be additionally energized by a K+ gradient. Furthermore, intravesicular K+ render Na+-dependent L-glutamic acid transport sensitive to changes in the transmembrane electrical potential difference.[Abstract] [Full Text] [Related] [New Search]