These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioactivation and covalent binding of halothane in vitro: studies with [3H]- and [14C]halothane. Author: Gandolfi AJ, White RD, Sipes IG, Pohl LR. Journal: J Pharmacol Exp Ther; 1980 Sep; 214(3):721-5. PubMed ID: 7400975. Abstract: To determine if the hydrogen atom of halothane (CF3CHBrCl) is retained on the reactive intermediates that covalently bind to microsomal lipids and protein, [3H]halothane and [14C]halothane were incubated with rat hepatic microsomes and a NADPH generating system. Both [3H]- and [14C]halothane were bioactivated and bound to a greater degree when incubations were performed in a N2 atmosphere rather than an O2 atmosphere. Binding of [3H]- and [14C]halothane equivalents was significanty enhanced when heaptic microsomes from phenobarbital- or Aroclor 1254-treated rats were used in the incubations. Omission of NADPH or incubation with CO was inhibitory to the binding of both [3H]- and [14C]halothane. The apparent kinetic constants for binding or halothane equivalents, Km and Vmax, indicate a significantly higher Km but lower Vmax for the formation and/or binding of 3H-binding equivalents. The results indicate tht halothane is primarily bioactivated under conditions that promote its reductive metabolism and that this reactive metabolism does not involve cleavage of the carbon-hydrogen bond of halothane. Differences in binding under N2 and O2 as well as between [3H]- and [14C]halothane suggest that multiple reactive intermediates may form during the biotransformation of halothane.[Abstract] [Full Text] [Related] [New Search]