These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scanning electron microscopic studies of the surface morphology of the vomeronasal epithelium and olfactory epithelium of garter snakes. Author: Wang RT, Halpern M. Journal: Am J Anat; 1980 Apr; 157(4):399-428. PubMed ID: 7405875. Abstract: Fixed vomeronasal and olfactory epithelia from normal adult garter snakes were microdissected, fractured, and examined with a scanning electron microscope. The method permits a detailed comparative study of the structural organization and morphological characteristics of the constituent cells of the vomeronasal and olfactory epithelia. Despite similarities in the nomenclature of the constituent cells in both epithelia, significant differences exist in their surface morphology. A unique columnar structure composed of non-neuronal elements is present in the vomeronasal epithelium. These columns house the bioplar neurons and undifferentiated cells. Such a columnar organization is absent in the olfactory epithelium. In vomeronasal epithelium the bipolar neurons possess microvillous terminals at their dendritic tips, while the dendritic tips of the bipolar neurons of the olfactory epithelium possess cilia. Vomeronasal supporting cells are covered with microvilli, while olfactory supporting cells are covered with cytoplasmic protuberances in addition to the microvilli. In the vomeronasal epithelium the pear-shaped neurons have a grossly smooth surface and are organized into clusters, while in the olfactory epithelium the elliptical bipolar neurons are spinous, aligned side-by-side and interdigitate. The basal (undifferentiated) cell layer in the vomeronasal epithelium has a high packing density and is composed of several layers of irregularly shaped cells. In the olfactory epithelium the basal cell layer is loosely organized and composed of a single layer of oval cells. This information on the three-dimensional cell structure of both epithelia provides a basis for experimental observations on changes in morphology of the bipolar neurons during genesis, development, maturation, degeneration, and regeneration in postnatal, adult animals.[Abstract] [Full Text] [Related] [New Search]