These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Visuo-oculomotor properties of cells in the superior colliculus of the alert cat.
    Author: Peck CK, Schlag-Rey M, Schlag J.
    Journal: J Comp Neurol; 1980 Nov 01; 194(1):97-116. PubMed ID: 7440801.
    Abstract:
    Visual responses and eye movement (EM) -related activities were studied in single units of the superior colliculus (SC) of alert cats. Spontaneous EMs were encouraged by training. Throughout the SC (i.e., in intermediate and deep layers as well as in superficial layers), units were found to respond well to visual stimuli. Strong and consistent responses could be elicited by very dim, low-contrast stationary stimuli. Visual responses varied from phasic to tonic; some units responded tonically to stationary stimuli in the center of the receptive field, and phasically to peripheral stimuli. Many cells responded more vigorously to moving than to stationary stimuli, but very few responded exclusively to stimulus movement. The vast majority of cells were directionally selective. A small number of units were sensitive to the absolute, as well as the retinal, position of visual stimuli. These cells were activated by visual stimuli which fell in the receptive field only if the cat's gaze was fixated on one half of the screen. It seems that these cells must receive information about both eye position and the retinal (receptive field) position of the stimulus. It is possible that they reflect coding of target location within a head (or body) frame of reference. EM-related units were of two types: (1) about 20% of the sample responded prior to spontaneous or visually-triggered EMs, and (2) another 10% (or more) responded with, but not before, EMs. Some cells in the second group discharge almost synchronously with EMs and, thus, cannot plausibly be said to respond to the movement of images across the retina. All cells in the first group were directionally selective. The percentage of EM-related cells in the deep layers of SC is lower in cat than in monkey. Possible reasons for such differences are discussed.
    [Abstract] [Full Text] [Related] [New Search]