These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physicochemical characterization of the ribosomal RNA species of the Mollusca. Molecular weight, integrity and secondary-structure features of the RNA of the large and small ribosomal subunits. Author: Cammarano P, Londei P, Mazzei F, Felsani A. Journal: Biochem J; 1980 Aug 01; 189(2):313-35. PubMed ID: 7458915. Abstract: 1. The rRNA species of the Cephalopoda Octopus vulgaris and Loligo vulgaris were found to have unexpectedly high sedimentation coefficients and molecular weights. In 0.1 M-NaCl the L-rRNA (RNA from large ribosomal subunit) has the same s20 value as the L-rRNA of the mammals (30.7S), whereas the S-rRNA (RNA from small ribosomal subunit) sediments at a faster rate (20.1S) than the S-rRNA of both the mammals and the fungi (Neurospora crassa) (17.5S). The molecular weights of the L-rRNA were determined by gel electrophoresis in formamide and found to be 1.66 X 10(6) (Octupus) and 1.89 X 10(6) (Loligo); the mol.wt. of the S-rRNA of both species is 0.96 X 10(6), i.e. much larger than that of the mammals (0.65 X 10(6)) and almost coincident with that of the '23S' RNA of the prokaryotes. 2. By contrast, the less evolved Gastropoda and Lamellibranchiata (Murex trunculus and Macrocallista chione) have S-rRNA and L-rRNA species with mol.wts. of 0.65 X 10(6) and approx. 1.40 X 10(6).3. All the mature L-rRNA molecules of the cephalopoda are composed of two unequal fragments held together by regions of hydrogen-bonding having a similar, low, thermal stability in the two species; the molecular weights of the two fragments composing the L-rRNA are estimated to be 0.96 X 10(6) and 0.88 X 10(6) (Loligo) and 0.96 X 10(6) and 0.65 X 10(6) (Octupus). THe S-rRNA of both species is a continuous chain with exactly the same molecular weight (0.96 X 10(6)) as the heavier of the two fragments of the L-rRNA. 4. The secondary-structure features of the L-rRNA and S-rRNA species of the Caphalopoda were investigated by thermal 'melting' analysis in 4.0 M-guanidinium chloride; 60-70% of the residues are estimated to form short, independently 'melting' bihelical segments not more than 10 base-pairs in length. 5. Bases are unevenly distributed between non-helical and bihelical portions of the rRNA molecules, G and C residues being preferentially concentrated in bihelical comains. 6. The secondary-structure regions of the L-rRNA species of Octopus and Loligo are heterogenous, including two discrete fractions of independently 'melting' species that give rise to biphasic 'melting' profiles: a fraction consisting of shorter (G + C)-poorer segments (60-68% G + C, not more than 5 base-pairs in length) and a fraction consisting of longer (G + C)-richer segments (80-88% G + C, 5-10 base-pairs in length). No evidence for heterogeneity has been detected in the S-rRNa.[Abstract] [Full Text] [Related] [New Search]