These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies on the nutrition of salmonid fish. The magnesium requirement of rainbow trout (Salmo gairdneri).
    Author: Knox D, Cowey CB, Adron JW.
    Journal: Br J Nutr; 1981 Jan; 45(1):137-48. PubMed ID: 7470429.
    Abstract:
    1. Rainbow trout (Salmo gairdneri) of mean initial weight 35 g were given one of five experimental diets for 20 weeks. The diets contained (g/kg dry diet) 15 calcium, 10 phosphorus and graded levels of magnesium from 0.04 (diet no. 1) to 1.0 (diet no. 5). In a second experiment rainbow trout of mean initial weight 16 g were given one of six experimental diets for 20 weeks. The diets contained (g/kg dry diet): Ca (40), P (30) and levels of Mg from 0.06 (diet no. 6) to 2.0 (diet no. 11). 2. In both experiments weight gains were lowest in those trout given diets containing the basal levels of Mg (diet no. 1 and diet no. 6) but increased with increasing dietary Mg concentration. In neither experiment was there any further increase in weight gain once the Mg concentration reached 0.25-0.5 g/kg dry diet; weight gain reached a plateau at this dietary MG level. 3. The following trends occurred in serum electrolyte concentrations as dietary Mg increased. Mg increased in both experiments, in Expt 2 it reached a maximum of 1 mmol/l when the diet contained 0.5 g Mg/kg and did not increase further; sodium was positively correlated in both experiments; potassium decreased and in Expt 2 reached a plateau minimum of 1.7 mmol/l at a dietary Mg concentration of 0.5 g/kg; Ca and P altered little in either experiment. 4. In both experiments renal Ca concentrations were greatly increased in trout given diets lacking supplementary Mg; they fell to low levels (3-5 mmol/kg) when diets contained 0.15 g Mg/kg or more. Renal K and P concentrations were negatively correlated with dietary Mg in Expt 2; other electrolytes measured were not altered in concentration by the treatments used. 5. Extracellular fluid volume (ECFV) of muscle was negatively correlated with dietary Mg. In Expt 2 it reached a minimal or normal value at 0.5 g Mg/kg diet and did not decrease further. Muscle Mg concentration increased with diet Mg in both experiments and muscle K concentration was also correlated with diet Mg in Expt 2. These changes were related to the shift in muscle water. In Expt 1, P concentration was decreased with increasing diet Mg but in Expt 2 its concentration increased, these changes may have been connected with the three-fold difference in dietary P in the two experiments. 6. By contrast with skeletal muscle, Mg levels in cardiac muscle increased at low dietary Mg intakes. 7. Concentrations of electrolytes in liver did not alter with the dietary treatments used. 8. The results show that Mg requirement of rainbow trout is met by a diet containing 0.5 gMg/kg diet.
    [Abstract] [Full Text] [Related] [New Search]