These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation.
    Author: Huston E, Cullen GP, Burley JR, Dolphin AC.
    Journal: Neuroscience; 1995 Sep; 68(2):465-78. PubMed ID: 7477957.
    Abstract:
    In this study, we have examined both the ability of various Ca2+ channel sub-types to support the release of [3H]glutamate from cerebellar granule neurons and the mechanism of action involved in the modulation of glutamate release by the GABAB receptor agonist, (-)-baclofen. Cerebellar granule neurons were stimulated to release newly synthesized [3H]glutamate by K(+)-evoked depolarization. Stimulated release was entirely calcium-dependent and abolished by the presence of 200 microM cadmium. Release of glutamate was not affected by either tetrodotoxin or 5-aminophosphonovaleric acid but was potentiated by dihydrokainate and inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione. Stimulated glutamate release was partially inhibited by both the L-type calcium channel blocker, nicardipine, and the N-type calcium channel blocker, omega-conotoxin GVIA; however, the P/Q-type calcium channel blocker omega-agatoxin IVA inhibited release of glutamate only after pre-incubation of cells with omega-conotoxin GVIA. K(+)-stimulated release of glutamate was observed when stimulated either in the presence of Ca2+ or of Ba2+ and similar inhibition of release by (-)-baclofen was seen under both conditions. In contrast to these results, ionomycin-evoked glutamate release was greatly reduced as compared to K(+)-evoked release and was not modulated by (-)-baclofen. In the presence of omega-conotoxin GVIA alone, inhibition of release by (-)-baclofen was attenuated but not abolished. Following block of nicardipine-sensitive channels, inhibition of release by (-)-baclofen was still present, and after prior block of omega-conotoxin GVIA-sensitive channels the presence of nicardipine restored the ability of (-)-baclofen to inhibit residual release of glutamate. Modulation of glutamate release by (-)-baclofen was unaffected by the presence of omega-agatoxin IVA alone; however, after block of both omega-conotoxin GVIA- and omega-agatoxin IVA-sensitive channels, inhibition of release by (-)-baclofen was completely abolished. These results indicate that multiple sub-types of voltage-dependent calcium channels are present on the presynaptic terminals of cerebellar granule neurons and support K(+)-stimulated release of [3H]glutamate. Modulation of release by GABAB receptor activation appears to be dependent upon interaction of this receptor with a number of voltage-sensitive calcium channels, including omega-conotoxin GVIA-sensitive and omega-agatoxin IVA-sensitive channels.
    [Abstract] [Full Text] [Related] [New Search]