These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isokinetic hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity correction and contraction mode. Author: Aagaard P, Simonsen EB, Trolle M, Bangsbo J, Klausen K. Journal: Acta Physiol Scand; 1995 Aug; 154(4):421-7. PubMed ID: 7484168. Abstract: This study investigated isokinetic peak- and angle-specific hamstring/quadriceps strength ratios (conventional H/Q ratio) obtained during concentric and eccentric muscle contraction and examined the influence of joint angular velocity and the effect of gravity correction on these ratios. Also, a 'functional' H/Q ratio was defined by calculating eccentric hamstring strength relative to concentric quadriceps strength (Hecc/Qcon' representative for knee extension) and calculating concentric hamstring strength relative to eccentric quadriceps strength (Hcon/Qecc' representative for knee flexion). The H/Q ratio was calculated based on isokinetic peak moment and 50 degree-moment (0 degree = full extension) obtained at joint angular velocities 30, 120 and 240 degrees s-1. Gravity corrected conventional H/Q ratio remained constant across speeds and contraction mode, ranging from 0.47 to 0.54 and from 0.49 to 0.56 based on peak and 50 degree moment, respectively. In contrast, non-corrected H/Q ratio increased during concentric contraction from 0.58 at 30 degrees s-1 to 0.74 at 240 degree s-1 (P < 0.01). For knee extension at 240 degrees s-1 an Hecc/Qcon of 1.05 (peak) and 0.89 (50 degrees) was observed while for flexion at 240 degrees s-1 an Hcon/Qecc of 0.27 (peak) and 0.28 (50 degrees) was observed. In conclusion, gravity correction had high influence on the change in H/Q ratio with variation in extension velocity. A potential 1:1 hamstring/quadriceps strength relationship was demonstrated for fast knee extension, indicating a significant functional capacity of the hamstring muscles for providing muscular stability at the knee joint in such situations.[Abstract] [Full Text] [Related] [New Search]