These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo evaluation of three acid-stable azalide compounds, L-701,677, L-708,299 and L-708,365 compared to erythromycin, azithromycin and clarithromycin. Author: Gill CJ, Abruzzo GK, Flattery AM, Smith JG, Jackson J, Kong L, Wilkening R, Shankaran K, Kropp H, Bartizal K. Journal: J Antibiot (Tokyo); 1995 Oct; 48(10):1141-7. PubMed ID: 7490222. Abstract: L-701,677, L-708,299 and L-708,365 are novel azalide derivatives of erythromycin that exhibit improved acid stability over erythromycin, azithromycin and clarithromycin. The half-life in aqueous solution at pH = 2.1 of these compounds ranged from 0.3 hour for erythromycin to 16.2 hours for L-708,299. The rank order of half-life in acid solution from most to least stable was L-708,299 > L-701,677 > L-708,365 > azithromycin = clarithromycin > erythromycin. In a disseminated Streptococcus pyogenes mouse infection model, azithromycin and L-708,365 were slightly more efficacious than clarithromycin, L-701,677 and L-708,299; all 5 compounds being more active than erythromycin. In a Klebsiella pneumoniae pulmonary challenge mouse model, azithromycin, L-701,677, L-708,299 and L-708,365 were all equal in efficacy and at least four-fold more active than clarithromycin and erythromycin. Clarithromycin, L-708,365 and interestingly erythromycin, showed greater bacterial clearance than azithromycin, L-701,677 and L-708,299 in a localized infection model that measured clearance of Staphylococcus aureus from mouse thigh tissues. Our results indicate that L-701,677, L-708,299 and L-708,365 exhibit improved acid stability and were at least equally efficacious as presently marketed macrolide/azalide antibiotics.[Abstract] [Full Text] [Related] [New Search]