These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Barium block of the muscarinic potassium current in guinea-pig atrial cells. Author: Zang WJ, Yu XJ, Boyett MR. Journal: Pflugers Arch; 1995 Jul; 430(3):348-57. PubMed ID: 7491258. Abstract: Block of the muscarinic K+ current (iK,ACh) by Ba2+ has been studied in guinea-pig atrial cells using the whole-cell patch-clamp technique. The dose-response curve for the block of iK,ACh can be fitted assuming that a muscarinic K+ channel is blocked when a single Ba2+ ion binds to it (apparent dissociation constant, Kd = 125 microM at 0 mV). Block was voltage and time dependent. The voltage dependence can be explained by Ba2+ binding to a site within the pore of the channel, 36% across the width of the membrane electric field (from the outside). Raising the bathing K+ concentration reduced Ba2+ block of iK,ACh, which suggests that Ba2+ and K+ compete for a common binding site. When Ba2+ was added during an exposure to ACh (muscarinic K+ channel open), block of iK,ACh developed rapidly, but when Ba2+ was added prior to an exposure to ACh (muscarinic K+ channel closed), little block of iK,ACh was evident when ACh was first applied. This suggests that when the muscarinic K+ channel is closed in the absence of ACh, Ba2+ does not have access to the binding site within the pore of the channel. In conclusion, Ba2+ block of iK,ACh is concentration, voltage, time, K+ and state dependent.[Abstract] [Full Text] [Related] [New Search]