These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phase transfer and point-spread function of the human eye determined by a new asymmetric double-pass method. Author: Navarro R, Losada MA. Journal: J Opt Soc Am A Opt Image Sci Vis; 1995 Nov; 12(11):2385-92. PubMed ID: 7494153. Abstract: A recent study has shown that the double-pass method provides a good estimate of the ocular modulation transfer function (MTF) but that it does not yield the phase transfer function (PTF) [J. Opt. Soc. Am. A 12, 195 (1995)]. Therefore, one cannot recover the true retinal point-spread function (PSF). We present a modification of the double-pass method to overcome this problem. The key is to break the symmetry between the two passes. By using an unexpanded Gaussian input beam, we produce a diffraction-limited PSF for the first passes. Then, by using a large exit pupil, we get an aberrated PSF for the second pass. The double-pass aerial image is the cross correlation of both PSF's, so that the Fourier transform of such an aerial image directly provides the true retinal PTF, up to the cutoff frequency of the effective (small), diffraction-limited entrance pupil. The resulting double-pass aerial image is a blurred version of the true retinal PSF. Thus it shows the effect not only of even symmetric aberrations but also of odd and irregular aberrations such as coma. We have explored two different ways to retrieve the true retinal PSF: (a) deblurring of the aerial image and (b) PSF reconstruction combining PTF data with conventional double-pass MTF. We present promising initial results with both artificial and real eyes.[Abstract] [Full Text] [Related] [New Search]