These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A conserved region of c-Ha-Ras is required for efficient GTPase stimulation by GTPase activating protein but not neurofibromin.
    Author: Yoder-Hill J, Golubic M, Stacey DW.
    Journal: J Biol Chem; 1995 Nov 17; 270(46):27615-21. PubMed ID: 7499225.
    Abstract:
    The effector binding domain and the switch II region of c-Ha-Ras are necessary for p120GAP-stimulated GTP hydrolysis. We report a third region of c-Ha-Ras located within the alpha 3 helix (amino acids 101-103) which is also required for efficient p120GAP, but not neurofibromin-mediated hydrolysis. This highly conserved region of the Ras protein was investigated using an insertion-deletion mutant (Ras-100LIR104) originally characterized by Willumsen et al. (Willumsen, B. M., Adari, H., Zhang, K., Papageorge, A. G., Stone, J. C., McCormick, F., and Lowy, D. R (1989) in The Guanine Nucleotide Binding Proteins; Common Structural and Functional Properties (Bosch, L., Kraal, B., and Parmeggiani, A., eds) pp. 165-178, Plenum Press, New York). The 100LIR104 substitution did not alter the intrinsic hydrolytic rate of the protein. The p120GAP-stimulated hydrolysis of Ras-100LIR104, however, was decreased by 2-3-fold compared to wild type Ras. This decrease in p120GAP-stimulated hydrolysis was not due to its inability to physically associate with Ras-100LIR104. GTP (as determined by competitive binding assays). Surprisingly, neurofibromin-stimulated GTP hydrolysis was unaltered by the mutation. Finally, no differences were observed in the ability of either the p120GAP catalytic domain or the neurofibromin GRD to accelerate Ras-100LIR104 GTPase activity, indicating that the amino-terminal noncatalytic GAP region is critical for p120GAP-stimulated GTP hydrolysis. This is the first report of a Ras mutation which differentiates between p120GAP and neurofibromin activity.
    [Abstract] [Full Text] [Related] [New Search]