These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arachidonoyl-diacylglycerol kinase. Specific in vitro inhibition by polyphosphoinositides suggests a mechanism for regulation of phosphatidylinositol biosynthesis.
    Author: Walsh JP, Suen R, Glomset JA.
    Journal: J Biol Chem; 1995 Dec 01; 270(48):28647-53. PubMed ID: 7499383.
    Abstract:
    We previously described the purification of a membrane-bound diacylglycerol kinase highly selective for sn-1-acyl-2-arachidonoyl diacylglycerols (Walsh, J. P., Suen, R., Lemaitre, R. N., and Glomset, J. A. (1994) J. Biol. Chem. 269, 21155-21164). This enzyme appears to be responsible for the rapid clearance of the arachidonate-rich pool of diacylglycerols generated during stimulus-induced phosphoinositide turnover. We have now shown phosphatidylinositol 4,5-bisphosphate to be a potent and specific inhibitor of arachidonoyl-diacylglycerol kinase. Kinetic analyses indicated a Ki for phosphatidylinositol 4,5-bisphosphate of 0.04 mol %. Phosphatidic acid also was an inhibitor with a Ki of 0.7 mol %. Other phospholipids had only small effects at these concentrations. A series of multiply phosphorylated lipid analogs also inhibited the enzyme, indicating that the head group phosphomonoesters are the primary determinants of the polyphosphoinositide effect. However, these compounds were not as potent as phosphatidylinositol 4,5-bisphosphate, indicating some specificity for the polyphosphoinositide additional to its total charge. Five other diacylglycerol kinases were activated to varying degrees by phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, suggesting that inhibition by acidic lipids may be specific for the arachidonoyl-DAG kinase isoform. Given the presumed role of arachidonoyl-diacylglycerol kinase in the phosphoinositide cycle, this inhibition may represent a mechanism for polyphosphoinositides to regulate their own synthesis.
    [Abstract] [Full Text] [Related] [New Search]