These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transcellular retrograde labeling of radial glial cells with WGA-HRP and DiI in neonatal rat and hamster. Author: Kageyama GH, Robertson RT. Journal: Glia; 1993 Sep; 9(1):70-81. PubMed ID: 7503953. Abstract: Topographically distinct populations of radial glial cells in the diencephalon and mesencephalon of neonatal rats and hamsters were transcellularly labeled with wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and with the lipophilic tracer DiI. A comparison of the histological distribution of the two tracers is suggestive of two different mechanisms of transcellular labeling. Intraocular injections of WGA-HRP resulted in the uptake of exogenously applied WGA-HRP by retinal ganglion cells, followed by anterograde axonal transport and exocytosis within the optic target nuclei. In addition to the transneuronal labeling, which is typical of such injections, we observed the transcellular labeling of the processes and somata of radial glial cells that were topographically associated with the terminal fields of the labeled axons. Similar transcellular labeling of radial glial cells associated with the axon terminal fields of the colliculogeniculate projection to the medial geniculate nucleus was observed following injections of WGA-HRP in the inferior colliculus. The transcellular labeling within the radial glial cells was discontinuous and somatopetally concentrated, indicating the existence of a retrograde active transport mechanism within the radial glial processes subsequent to its uptake following release of tracer from axons. This type of labeling can be referred to as transcellular retrograde glioplasmic transport. In contrast, DiI was used as a tracer through its capacity to diffuse within the plasmalemma. Topographically distinct populations of radial glial cells were transcellularly labeled following placements of DiI in the retina, inferior colliculus, or dorsal thalamus of fixed brains. The radial processes of labeled radial glial cells consistently extended into regions that also contained labeled axons. It is likely that the transcellular radial glial labeling with DiI occurred via transmembranous diffusion. These data indicate that a close structural and functional relation exists between axons and glial cells in the developing brain.[Abstract] [Full Text] [Related] [New Search]