These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence that substance P is utilized in medial amygdaloid facilitation of defensive rage behavior in the cat.
    Author: Shaikh MB, Steinberg A, Siegel A.
    Journal: Brain Res; 1993 Oct 22; 625(2):283-94. PubMed ID: 7506110.
    Abstract:
    The present study was designed to test the hypothesis that a major excitatory mechanism for the expression of feline defensive rage behavior involves the medial nucleus of the amygdala which utilizes substance P as a neurotransmitter in a direct output pathway that supplies the medial hypothalamus. In phase I of the experiment, stimulating electrodes were implanted into the medial amygdala and cannula electrodes were implanted into the medial and lateral hypothalamus from which defensive rage and predatory attack behavior could be elicited by electrical stimulation, respectively. Response latencies for defensive rage were significantly lowered after dual stimulation of the medial amygdala and medial hypothalamus relative to single stimulation of the medial hypothalamus alone. In phase II, dose- and time-dependent decreases in medial amygdaloid-induced facilitation of defensive rage were observed after the i.p. administration of the NK1 antagonist, CP-96,345 (0.05, 2 and 4 mg/kg). In phase III of the study, the effects of microinjections of CP-96,345 placed directly into defensive rage sites within the medial hypothalamus (0.05, 0.5 and 2.5 nmol) upon medial amygdaloid modulation of this response were assessed. Again, intracerebral administration of this antagonist blocked the facilitatory effects of medial amygdaloid-induced facilitation of defensive rage in a manner parallel to that observed with peripheral administration of the NK1 antagonist. The results suggest that the medial amygdala facilitates defensive rage by acting through a substance P mechanism at the level of the medial hypothalamus. Other experiments revealed that peripheral administration of the NK1 antagonist: (1) had little upon the latency or threshold for elicitation of defensive rage, suggesting that the medial amygdaloid-substance P facilitatory mechanism acts in a phasic rather than tonic manner; and (2) also blocks the suppressive effects of medial amygdaloid stimulation upon predatory attack behavior elicited from the lateral hypothalamus. The latter finding suggest that similar neurochemical mechanisms regulate medial amygdaloid modulation of both forms of hypothalamically elicited aggression. The final aspect of this study utilized the combination of retrograde-tracing of amygdaloid neurons into the medial hypothalamus after microinjections of Fluoro-Gold into defensive rage sites, and the immunocytochemical analysis of substance P neurons within the amygdala. The data indicated that large numbers of retrogradely and immunocytochemically positive labeled cells were identified in the medial nucleus, including many that were double-labeled.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]