These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization.
    Author: Murdoch AD, Liu B, Schwarting R, Tuan RS, Iozzo RV.
    Journal: J Histochem Cytochem; 1994 Feb; 42(2):239-49. PubMed ID: 7507142.
    Abstract:
    Perlecan, a multidomain heparan sulfate proteoglycan (PG), is an intrinsic component of basement membranes and extracellular matrices. We used a prokaryotic expression vector to generate fusion proteins encoding various domains of human perlecan protein core and these recombinant proteins were used as immunogens to produce mouse anti-human monoclonal antibodies (MAb). One MAb, designated 7B5, was characterized by Western blotting and ELISA and was shown to react specifically with the laminin-like region of perlecan (Domain III) but not with two other fusion proteins encoding Domain II or V. This perlecan epitope was detected by immunoenzymatic staining in the basement membranes of human tissues including pituitary gland, skin, breast, thymus, prostate, colon, liver, pancreas, spleen, heart, and lung. All vascular basement membranes tested contained this gene product. In addition, sinusoidal vessels of liver, spleen, lymph nodes, and pituitary gland expressed high levels of perlecan in the subendothelial region. In situ hybridization, using as probe the same human cDNA-encoding Domain III, localized perlecan mRNA to specific cell types within the tissues and demonstrated that in skin, perlecan appears to be synthesized exclusively by connective tissue cells in the dermal layer. The availability of MAb against precise regions of human perlecan will allow the investigation of this gene product in normal and diseased states.
    [Abstract] [Full Text] [Related] [New Search]