These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arrangement of domains, and amino acid residues required for binding of vascular cell adhesion molecule-1 to its counter-receptor VLA-4 (alpha 4 beta 1).
    Author: Osborn L, Vassallo C, Browning BG, Tizard R, Haskard DO, Benjamin CD, Dougas I, Kirchhausen T.
    Journal: J Cell Biol; 1994 Feb; 124(4):601-8. PubMed ID: 7508942.
    Abstract:
    Interaction of the vascular cell adhesion molecule (VCAM-1) with its counter-receptor very late antigen-4 (VLA-4) (integrin alpha 4 beta 1) is important for a number of developmental pathways and inflammatory functions. We are investigating the molecular mechanism of this binding, in the interest of developing new anti-inflammatory drugs that block it. In a previous report, we showed that the predominant form of VCAM-1 on stimulated endothelial cells, seven-domain VCAM (VCAM-7D), is a functionally bivalent molecule. One binding site requires the first and the other requires the homologous immunoglobulin-like domain. Rotary shadowing and electron microscopy of recombinant soluble VCAM-7D molecules suggests that the seven Ig-like domains are extended in a slightly bent linear array, rather than compactly folded together. We have systematically mutagenized the first domain of VCAM-6D (a monovalent, alternately spliced version mission domain 4) by replacing 3-4 amino acids of the VCAM sequence with corresponding portions of the related ICAM-1 molecule. Specific amino acids, important for binding VLA-4 include aspartate 40 (D40), which corresponds to the acidic ICAM-1 residue glutamate 34 (E34) previously reported to be essential for binding of ICAM-1 to its integrin counter-receptor LFA-1. A small region of VCAM including D40, QIDS, can be replaced by the similar ICAM-1 sequence, GIET, without affecting function or epitopes, indicating that this region is part of a general integrin-binding structure rather than a determinant of binding specificity for a particular integrin. The VCAM-1 sequence G65NEH also appears to be involved in binding VLA-4.
    [Abstract] [Full Text] [Related] [New Search]