These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: On the relationship between the mitochondrial inner membrane anion channel and the adenine nucleotide translocase. Author: Powers MF, Smith LL, Beavis AD. Journal: J Biol Chem; 1994 Apr 08; 269(14):10614-20. PubMed ID: 7511601. Abstract: The mitochondrial inner membrane anion channel (IMAC) is a transport pathway which is believed to be involved in mitochondrial volume homeostasis. The protein, however, has not been identified. In this paper, we examine the relationship between IMAC and the adenine nucleotide translocator. Many inhibitors of the adenine nucleotide translocase are shown to block IMAC, including Cibacron blue 3GA, bromcresol green, alizarin red S, agaric acid, palmitoyl-CoA, and the fluorescein derivatives erythrosin B, erythrosin isothiocyanate, rose bengal, and eosin Y. The following evidence suggests that Cibacron blue, agaric acid, and palmitoyl-CoA inhibit by binding to a common site. 1) They all only partially block the transport of small anions such as Cl-, NO3-, and HCO3-, but completely block the transport of larger anions such as malonate. 2) They decrease the IC50 values of each other in a manner consistent with competitive binding. 3) N-Ethylmaleimide decreases their IC50 values by a similar extent. 4) Inhibition by all shows no dependence on matrix pH and only a small dependence on medium pH. It is suggested that these agents may selectively bind to an open state of IMAC and inhibit by decreasing its conductance. The physiological nucleotides CoA, NAD+, NADH, NADP+, NADH, and ATP do not inhibit; in fact, IMAC is shown to transport ATP. Despite these similarities between IMAC and the adenine nucleotide translocase, IMAC appears to be a separate entity, since some of the IC50 values differ by up to 8-fold, and carboxyatracyloside, the most selective inhibitor of the adenine nucleotide translocase, has no effect on IMAC. In addition, IMAC is also able to transport AMP, while the adenine nucleotide translocase does not.[Abstract] [Full Text] [Related] [New Search]