These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cell calcium signaling via GM1 cell surface gangliosides in the human Jurkat T cell line. Author: Gouy H, Deterre P, Debré P, Bismuth G. Journal: J Immunol; 1994 Apr 01; 152(7):3271-81. PubMed ID: 7511641. Abstract: The cell surface ganglioside GM1 is the specific receptor for the B subunit of cholera toxin. We show here that in the human Jurkat T cell line an increase in intracellular free Ca2+ concentration can be elicited by using B subunits to ligate GM1 molecules. This Ca2+ signaling effect is clearly mediated through GM1 because it can be observed after direct insertion of exogenous GM1 in a Jurkat cell variant deficient in GM1 expression. The observed Ca2+ response clearly involves both the release of Ca2+ from intracellular stores and a Ca2+ influx from extracellular spaces. It is sustained in the presence of 1 mM extracellular Ca2+, whereas it becomes transient in Ca(2+)-free medium. We show that the GM1-mediated stimulation partially empties the CD3-dependent and inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ pool suggesting a dependence of the Ca2+ response from activation of phospholipase C (PLC) metabolism. Accordingly, tyrosine phosphorylation of PLC gamma-1 can be evidenced but only in Jurkat cells highly expressing GM1. GM1 stimulation results in an IL-2 production comparable to that obtained after CD3 activation. Finally, the GM1-linked cell Ca2+ activation pathway is also observed in a Jurkat cell clone lacking Ag-specific receptor expression suggesting that the presence of functional CD3/TCR molecules is not essential for GM1-induced cell Ca2+ response. Altogether, these data show that cell surface gangliosides GM1 may act as a signaling molecule in Jurkat T cells possibly by a new pathway, a finding of importance when considering a possible function for ubiquitous membrane carbohydrate structures in T cell recognition systems.[Abstract] [Full Text] [Related] [New Search]