These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of covalently bound amino-terminal myristic acid in endothelial nitric oxide synthase. Author: Liu J, Sessa WC. Journal: J Biol Chem; 1994 Apr 22; 269(16):11691-4. PubMed ID: 7512951. Abstract: Endothelial nitric oxide synthase (eNOS) is unique among the nitric oxide synthase family of proteins due to the presence of an N-myristoylation consensus sequence elucidated from the cloning of its cDNA. Although eNOS was metabolically labeled with [3H]myristic acid and mutation of glycine 2 in the N-myristoylation consensus sequence changed the particulate localization of the enzyme to a cytosolic form, the definitive characterization of eNOS as an N-myristoylprotein has not been demonstrated. Therefore, the purpose of the present study was to determine the nature of the fatty acid incorporated into eNOS. Wild-type or G2A mutant (mutation of glycine 2, the myristic acid acceptor site, to alanine) eNOS-transfected COS cells and bovine aortic endothelial cells (BAEC) were metabolically labeled with [3H]myristic acid for 5 h. The radiolabel was primarily incorporated into membrane-associated eNOS from wild-type transfected COS cells and cultured BAEC but not into the mutant eNOS from G2A-transfected COS cells. Qualitatively similar amounts of immunoreactive protein were found in wild-type and G2A-transfected cells. In addition, linkage of the radiolabel to eNOS was insensitive to hydroxylamine treatment, and incorporation of the radiolabel into eNOS was abolished by cyclo-heximide. Chemical analysis of the fatty acid released by acid methanolysis of labeled eNOS verified the 3H-labeled fatty acid as protein-bound myristic acid. These results unequivocally demonstrate that eNOS incorporates myristic acid via an amide linkage with the amino-terminal glycine of the enzyme as a co-translational modification.[Abstract] [Full Text] [Related] [New Search]