These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Methylprednisolone and membrane properties of primary cultures of mouse spinal cord.
    Author: Anderson DK, Dugan LL, Means ED, Horrocks LA.
    Journal: Brain Res; 1994 Feb 21; 637(1-2):119-25. PubMed ID: 7514081.
    Abstract:
    The present study attempts to define the capacity of methylprednisolone sodium succinate (MP) to protect neuronal membranes against a free radical challenge in primary cultures of fetal mouse spinal cord. Incubation of these cultures with MP significantly increased the Na+,K(+)-ATPase activity, an effect that was blocked by the RNA synthesis inhibitor, actinomysin D and the protein synthesis inhibitor, cycloheximide, suggesting an induction of protein synthesis by MP. In contrast, incubation with FeCl2 for 1 or 2 h significantly inhibited Na+,K(+)-ATPase activity and elevated the levels of thiobarbituric acid-reactive substances (TBARS). Pretreatment with MP prevented the rise in TBARS and partially prevented the decrease in Na+,K(+)-ATPase activity for the first hour of FeCl2 incubation, an effect that was lost during the second hour. A second dose of MP after the first hour of incubation with FeCl2 partially restored Na+,K(+)-ATPase activity and reduced TBARS levels after the second hour of exposure to FeCl2. Co-incubation of MP with cycloheximide completely prevented the decrease in Na+,K(+)-ATPase activity seen after a 2-h incubation with FeCl2 and eliminated the need for a second dose of MP after the first hour of incubation with FeCl2. These findings suggest a capacity for rapid protein induction and antioxidant activity for MP in vitro.
    [Abstract] [Full Text] [Related] [New Search]