These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV.
    Author: Ide H, Tedzuka K, Shimzu H, Kimura Y, Purmal AA, Wallace SS, Kow YW.
    Journal: Biochemistry; 1994 Jun 28; 33(25):7842-7. PubMed ID: 7516707.
    Abstract:
    Oligonucleotides containing a unique alpha-deoxyadenosine or tetrahydrofuran (a model abasic site) were synthesized using phosphoramidite chemistry. Repair enzymes from Escherichia coli, including endonucleases III, IV, and VIII, exonuclease III, formamidopyrimidine N-glycosylase, and deoxyinosine 3'-endonuclease, as well as UV dimer N-glycosylases from T4 (den V) and Micrococcus luteus, were examined for their ability to recognize alpha-deoxyadenosine and tetrahydrofuran. In agreement with prior studies, a tetrahydrofuran-containing oligonucleotide was a substrate for endonuclease IV and exonuclease III, but not for the other repair enzymes. However, an oligonucleotide containing alpha-deoxyadenine was a substrate only for endonuclease IV. Competitive inhibition studies with both substrates confirmed that the activity recognizing alpha-deoxyadenine was endonuclease IV and not a possible contaminant in the endonuclease IV preparation. Using E. coli extracts, the activity that recognized alpha-deoxyadenine was dependent on nfo, the structural gene of endonuclease IV, further substantiating that endonuclease IV is the enzyme that recognized alpha-deoxyadenine. Kinetic measurements indicated that alpha-deoxyadenosine was as good a substrate for endonuclease IV as tetrahydrofuran; the Km and Vmax values for both substrates were similar. Using substrates that were labeled at either the 3'- or 5'-terminus, endonuclease IV was shown to hydrolyze the phosphodiester bond 5' to either alpha-deoxyadenosine or tetrahydrofuran, leaving the lesion, alpha-deoxyadenosine or tetrahydrofuran, on the 5'-terminus of the nicked site. The ability of endonuclease IV to recognize alpha-deoxyadenosine suggests that endonuclease IV is able to recognize a new class of DNA base lesions that is not recognized by other DNA N-glycosylases and AP endonucleases.
    [Abstract] [Full Text] [Related] [New Search]