These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy. Author: Wessel K, Verleger R, Nazarenus D, Vieregge P, Kömpf D. Journal: Electroencephalogr Clin Neurophysiol; 1994 Jul; 92(4):331-41. PubMed ID: 7517855. Abstract: To determine the influence of cerebellar involvement on the preparatory state of the cerebral cortex for voluntary movements, we studied the movement-related cortical potentials (Bereitschaftspotential, BP) preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy (CA). The first task (paradigm 1) consisted of a sequential finger movement at a self-paced rate of every 3 sec or longer, in which patients and control subjects pushed rapidly 7 keys on a keyboard in a sequence visually predetermined on a screen. The second task (paradigm 2) consisted of a goal-directed self-paced movement with visual feedback on a screen. In both paradigms, control subjects and patients had distinct movement-related cortical potentials, but peak amplitudes (close to movement onset) were reduced in the patient group (paradigm 2), whereas in the overall analysis the mean amplitude 600-800 msec before movement onset (NS1) was larger in the patient group (paradigms 1 and 2). Accordingly, the difference (NS2) between peak amplitude and NS1 was smaller in the patient group (paradigms 1 and 2). Whereas control subjects' peak amplitude (paradigm 2) and NS2 (paradigm 1) were focused at Cz, this topographical differentiation was abolished in the patient group. The onset of the BP was earlier in the patients than in the control subjects (paradigms 1 and 2). Our results suggest that pathways from the cerebellum to the cortex do play a role in generating movement-related cortical potentials. A strong input from the cerebellum seems to be crucial for the generation of a normal motor potential close to the movement onset, reflecting a specific deficit in patients with CA. Patients with CA may try to compensate for their motor deficits by a longer cortical activation preceding voluntary movements (earlier onset of the BP). The increased NS1 could be the result of larger effort, by which patients try to compensate for their motor deficits as well.[Abstract] [Full Text] [Related] [New Search]