These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synergy of IL-1 and stem cell factor in radioprotection of mice is associated with IL-1 up-regulation of mRNA and protein expression for c-kit on bone marrow cells. Author: Neta R, Oppenheim JJ, Wang JM, Snapper CM, Moorman MA, Dubois CM. Journal: J Immunol; 1994 Aug 15; 153(4):1536-43. PubMed ID: 7519205. Abstract: Administration of IL-1 and stem cell factor (SCF) to mice 18 h before lethal 60Co whole-body irradiation resulted in synergistic radioprotection, as evidenced by increased numbers of mice surviving 1,200 to 1,300 cGy doses of radiation and the recovery of increased numbers of c-kit+ bone marrow cells at 1 and 4 days after the lethal dose of 950 cGy. Anti-SCF Ab inhibited IL-1-induced radioprotection, indicating that endogenous production of SCF is necessary for radioprotection by IL-1. Conversely, radioprotection induced by SCF was reduced by anti-IL-1R Ab, indicating that endogenous IL-1 contributes to SCF radioprotection. SCF, unlike IL-1 does not induce hemopoietic CSFs and IL-6 or gene expression of a scavenging mitochondrial enzyme manganese superoxide dismutase in the bone marrow, suggesting that SCF and IL-1 radioprotect by distinct pathways. The mRNA expression for c-kit (by Northern blot analysis) and 125I-SCF binding on bone marrow cells was elevated within 2 and 4 h of IL-1 administration respectively. Four days after LD 100/30 radiation the recovery of c-kit+ bone marrow cells was increased sixfold in IL-1-treated mice, almost 20-fold in SCF-treated mice, and 40-fold in mice treated with the combination of the two cytokines. Thus, endogenous production of both IL-1 and SCF is required for resistance to lethal irradiation and the synergistic radioprotective effect of the two cytokines may, in part, depend on IL-1 and SCF-induced increases in numbers of c-kit+ hemopoietic stem and progenitors cells that survive lethal irradiation.[Abstract] [Full Text] [Related] [New Search]