These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons.
    Author: Alvarez-Leefmans FJ, Cruzblanca H, Gamiño SM, Altamirano J, Nani A, Reuss L.
    Journal: J Neurophysiol; 1994 May; 71(5):1787-96. PubMed ID: 7520481.
    Abstract:
    1. Transmembrane ion movements upon sodium-pump inhibition were studied in identified neurons of the subesophageal ganglia of Helix aspersa. A two-microelectrode, voltage-clamp technique was used to measure transmembrane currents. Changes in intracellular Na+, K+, and Ca2+ concentrations were measured, in unclamped neurons, with Na(+)-sensitive microelectrodes, K(+)-sensitive microelectrodes, and with the fluorescent probe fura-2, respectively. 2. Inhibition of the sodium pump with ouabain (1 mM) elicited an increase in intracellular Na+ concentration, [Na+]i, at an initial rate of 0.42 +/- 0.05 mM/min (mean +/- SE; n = 27), and a membrane depolarization often followed by hyperpolarization. In cells clamped at -50 or -60 mV, ouabain produced an inward shift in membrane-holding current followed by an outward current usually having two components, transient and sustained, respectively. 3. Replacing external Na+ with either N-methyl-D-glucammonium or tetraethylammonium (TEA+) abolished both the ouabain-induced inward membrane current and the rise in [Na+]i, suggesting that Na+ was the charge carrier of the inward current. 4. Cd2+ (400 microM) reduced the rate of rise of the inward current by 60% and the estimated net Na+ flux by 47%. 5. The outward current was abolished by K(+)-channel blockers (10 mM TEA+ and 5 mM 4-aminopyridine or 10 nM apamin). Cd2+ (400 microM), a Ca(2+)-entry blocker, also abolished the outward current. 6. Inhibition of the sodium pump elicited a fall in [K+]i at an initial rate of 1.4 +/- 0.2 mM/min (n = 9 cells). 7. Upon inhibition of the sodium pump in neurons loaded with fura-2, [Ca2+]i increased from an estimated resting level of 147 +/- 37 nM to a maximum of 764 +/- 248 nM (n = 12 cells). 8. The rise in [Ca2+]i in the sustained presence of ouabain was transient, lasting 19.5 +/- 2.8 min, and could be prevented by removal of external Ca2+ before ouabain application or curtailed by removal of external Ca2+ during sustained ouabain exposure. The latter effect was not a consequence of exhaustion of caffeine-sensitive intracellular Ca2+ stores. 9. It is concluded that 1) the rise in [Ca2+]i upon Na(+)-pump inhibition requires the presence of external Ca2+, 2) the outward current observed upon pump inhibition is a Ca(2+)-activated K+ current flowing through apamin-sensitive channels, 3) the resting Na+ permeability involves a Cd(2+)-sensitive component, 4) a large fraction (approximately 30-60%) of the previously described ouabain-induced cell shrinkage may result from Ca(2+)-activated K+ efflux contributing to net solute and water loss.
    [Abstract] [Full Text] [Related] [New Search]