These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Voltage-dependent ionic conductances in Chinese hamster ovary cells. Author: Skryma R, Prevarskaya N, Vacher P, Dufy B. Journal: Am J Physiol; 1994 Aug; 267(2 Pt 1):C544-53. PubMed ID: 7521129. Abstract: Chinese hamster ovary (CHO) cells are becoming a widely used biological material. A number of studies report membrane ion conductance changes after transfection of channels and receptors, but there are few data available on the properties of membrane ion conductances of CHO cells before transfection. In this work we studied voltage-dependent ionic conductances in cultures of CHO native (CHO-K1) cells. Three types of voltage-dependent ionic conductances were identified: 1) a K+ conductance showing sensitivity to Ca2+ and a unit conductance of approximately 210 pS in symmetrical 150 mM K+ outside-out patches (this conductance, which did not inactivate during a 160-ms pulse, was inhibited by 30 nM charybdotoxin but not by 30 mM extracellular tetraethylammonium); 2) a rapidly activating and inactivating tetrodotoxin (TTX)-sensitive inward current, peaking at about -10 to 0 mV (this current showed characteristics similar in many respects to Na+ current recorded in neurons); and 3) another voltage-dependent inward current, which had slow inactivation, was TTX insensitive but was blocked by Co2+ (current was also carried by Ba2+, peaked at approximately 0 to +10 mV, was identified as a Ca2+ conductance, and was inhibited by dihydropyridines but not by 10 microM omega-conotoxin). Cell-attached patch recordings of single Ca2+ channel currents demonstrated a unitary conductance of approximately 20 pS.[Abstract] [Full Text] [Related] [New Search]