These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Response of interleukin-6-deficient mice to tumor necrosis factor-induced metabolic changes and lethality.
    Author: Libert C, Takahashi N, Cauwels A, Brouckaert P, Bluethmann H, Fiers W.
    Journal: Eur J Immunol; 1994 Sep; 24(9):2237-42. PubMed ID: 7522168.
    Abstract:
    Whether interleukin (IL)-6 contributes to tumor necrosis factor (TNF)-induced lethal shock or whether, on the contrary, it is part of a protective feedback system, remains unresolved. Here, we report experiments with IL-6 gene-disrupted mice (IL-6(0/0)). We have tested the susceptibility of these to TNF-induced metabolic changes and lethality in different models, and compared the results with those obtained with IL-6+/+ wild-type mice. We studied the response to TNF in three different models: (i) murine TNF administration; (ii) TNF in galactosamine (GalN)-sensitized mice; (iii) TNF in Bacillus Calmette-Guérin-sensitized mice. We observed no significant difference between the two types of mice in any of the three models. Furthermore, IL-6(0/0) mice could be equally well desensitized (by IL-1) to TNF/GalN-induced lethality and tolerized to TNF-induced shock as IL-6+/+ mice. We also observed that, in response to turpentine, TNF or IL-1, IL-6(0/0) mice produced significantly less acute phase proteins (APP) than IL-6+/+ mice. In IL-6(0/0) mice, less corticosterone was induced by TNF than in the control mice, while the response to adrenocorticotropic hormone was the same. The results indicate that IL-6 is not contributing in a major way to the pathogenesis leading to TNF-induced shock, and that neither IL-6 nor the APP studied are essential for a protective feedback system.
    [Abstract] [Full Text] [Related] [New Search]