These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solution structure of FK506 bound to the R42K, H87V double mutant of FKBP-12.
    Author: Lepre CA, Pearlman DA, Cheng JW, DeCenzo MT, Livingston DJ, Moore JM.
    Journal: Biochemistry; 1994 Nov 22; 33(46):13571-80. PubMed ID: 7524662.
    Abstract:
    The binding of the FK506/FKBP-12 complex to calcineurin (CN), its putative target for immunosuppression, involves recognition of solvent-exposed regions of the ligand as well as FKBP-12 residues near the active site. The R42K, H87V double mutation of FKBP-12 decreases the CN affinity of the complex by 550-fold [Aldape, R. A., Futer, O., DeCenzo, M. T., Jarrett, B. P., Murcko, M. A., & Livingston, D. J. (1992) J. Biol. Chem. 267, 16029-16032]. This work reports the solution structure of 13C-labeled FK506 bound to R42K, H87V FKBP-12. Assignments and NOE measurements at three mixing times were made from inverse-detected 1H-13C NMR experiments. Structures were calculated by several different methods, including distance geometry, restrained molecular dynamics, and molecular dynamics with time-averaged restraints. The NMR structures of the ligand are very well defined by the NOE restraints and differ slightly from the X-ray structure in regions that are involved in crystal packing. Comparison with the NMR structure of FK506 bound to wild-type FKBP-12 reveals that the R42K, H87V mutation causes the ligand backbone near C16 to move by 2.5 to 4.5 A, reorients 15-MeO by 90 degrees, and shifts 13-MeO by approximately 1.5 A. FK506 appears to undergo a concerted, mutationally induced shift in the binding pocket, with the greatest changes occurring in the effector region of the drug. The altered effector conformation of mutant-bound FK506 may perturb interactions between the drug and CN, thus accounting for the effect of the double mutation upon the CN inhibitory activity of the complex.
    [Abstract] [Full Text] [Related] [New Search]