These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix.
    Author: Pley HW, Flaherty KM, McKay DB.
    Journal: Nature; 1994 Nov 03; 372(6501):111-3. PubMed ID: 7526219.
    Abstract:
    In large structured RNAs, RNA hairpins in which the strands of the duplex stem are connected by a tetraloop of the consensus sequence 5'-GNRA (where N is any nucleotide, and R is either G or A) are unusually frequent. In group I introns there is a covariation in sequence between nucleotides in the third and fourth positions of the loop with specific distant base pairs in putative RNA duplex stems: GNAA loops correlate with successive 5'-C-C.G-C base pairs in stems, whereas GNGA loops correlate with 5'-C-U.G-A. This has led to the suggestion that GNRA tetraloops may be involved in specific long-range tertiary interactions, with each A in position 3 or 4 of the loop interacting with a C-G base pair in the duplex, and G in position 3 interacting with a U-A base pair. This idea is supported experimentally for the GAAA loop of the P5b extension of the group I intron of Tetrahymena thermophila and the L9 GUGA terminal loop of the td intron of bacteriophage T4 (ref. 4). NMR has revealed the overall structure of the tetraloop for 12-nucleotide hairpins with GCAA and GAAA loops and models have been proposed for the interaction of GNRA tetraloops with base pairs in the minor groove of A-form RNA. Here we describe the crystal structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. The interactions we observe correlate with the specificity of GNRA tetraloops inferred from phylogenetic studies, suggesting that this complex is a legitimate model for intramolecular tertiary interactions mediated by GNRA tetraloops in large structured RNAs.
    [Abstract] [Full Text] [Related] [New Search]