These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycosaminoglycans inhibit degradation of insulin-like growth factor-binding protein-5. Author: Arai T, Arai A, Busby WH, Clemmons DR. Journal: Endocrinology; 1994 Dec; 135(6):2358-63. PubMed ID: 7527332. Abstract: Human dermal fibroblasts secrete insulin-like growth factor-binding protein-3 (IGFBP-3), -4, and -5. Fibroblast-conditioned medium contains minimal intact IGFBP-5, and this form of IGFBP is predominantely a 23-kilodalton fragment, suggesting that the IGFBP-5 fragment is derived from intact IGFBP-5 by proteolysis. In this study we investigated the effects of glycosaminoglycans on IGFBP-5 degradation in fibroblast-conditioned medium. The addition of heparin, heparan sulfate, and dermatan sulfate (100 micrograms/ml) to the medium of fibroblast monolayer cultures inhibited IGFBP-5 degradation, as determined by the conversion of intact IGFBP-5 to a 23-kilodalton fragment. In contrast, hyaluronic acid, keratan sulfate, and chondroitin sulfate-A and -C had no effect. Heparin and heparan sulfate inhibited IGFBP-5 degradation at concentrations of 1 or 2.5 micrograms/ml, but 100 micrograms/ml dermatan sulfate were required. Heparin was also inhibitory in vitro, that is when conditioned medium and heparin were incubated without cells. Experiments with modified forms of heparin showed that O-sulfate groups in the 2 or 3 carbon position were required for heparin to be inhibitory. Completely desulfated heparin had no activity, and N-resulfation of desulfated heparin had only a minimal effect. Dextran sulfate, pentosan polysulfate, and fucoidan, which are composed of different saccharide units but contain O-sulfate groups in the 2 or 3 carbon positions, also inhibited IGFBP-5 degradation. These results demonstrate that heparin-like molecules are important regulators of IGFBP-5 degradation. O-Sulfation of the 2 or 3 position of the saccharide ring is required for inhibitory activity. As glycosaminoglycan side-chains are present in proteoglycans that are present in extracellular matrix and on cell surfaces, these side-chains represent a potential mechanism for regulating IGFBP-5 proteolysis in vivo.[Abstract] [Full Text] [Related] [New Search]