These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Analysis of myelin proteolipid protein and F0 ATPase subunit 9 in normal and jimpy CNS. Author: Benjamins JA, Studzinski DM, Skoff RP. Journal: Neurochem Res; 1994 Aug; 19(8):1013-22. PubMed ID: 7528346. Abstract: Membrane fractions and chloroform-methanol (C-M) extracts of jimpy (jp) and normal CNS at 17-20 days were examined by immunoblot and sequence analysis to determine whether myelin proteolipid protein (FLP) or DM-20 could be detected in jp CNS. No reactivity was detected in jp samples with several PLP antibodies (Abs) except with one Ab to amino acids 109-128 of normal PLP. Proteins in the immunoreactive bands approximately 26 M(r) comigrating with PLP were sequenced for the first 10-12 residues. A sequence corresponding to PLP was found in normal CNS, as expected, but not in the band from jp CNS. Our results provide no evidence for an aberrant form of PLP in jp CNS at 17-20 days. This and other studies suggest that the abnormalities in jp brain are not due to toxicity of the mutant jp PLP/DM-20 proteins. Interestingly, a sequence identical to the amino terminus of the mature proton channel subunit 9 of mitochondrial F0 ATPase was detected in the immunoreactive bands approximately 26 M(r) in both normal and jp samples. This identification was supported by reactivity with an Ab to the F0 subunit and by labeling with dicyclohexylcarbodiimide (DCCD). In contrast to PLP isolated from whole CNS, PLP isolated from myelin was devoid of F0 subunit 9 based on sequence analysis and lack of reactivity with an Ab to the F0 subunit, yet still reacted with DCCD. This finding rules out the possibility that contaminating F0 ATPase gives rise to the DCCD binding exhibited by PLP and confirms the possibility that PLP has proton channel activity, as suggested by Lin and Lees (1,2).[Abstract] [Full Text] [Related] [New Search]