These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein kinase C and insulin receptor beta-subunit serine phosphorylation in cultured foetal rat hepatocytes.
    Author: Zachayus JL, Cherqui G, Plas C.
    Journal: Mol Cell Endocrinol; 1994 Oct; 105(1):11-20. PubMed ID: 7529733.
    Abstract:
    In digitonin-permeabilized cultured foetal hepatocytes, insulin receptor beta-subunit was highly phosphorylated on serine residues in the presence of [gamma-32P]ATP and Ca2+, a process enhanced after short exposure to insulin with no detectable insulin receptor autophosphorylation. By contrast with this situation, experiments performed with isolated foetal insulin receptors revealed an insulin stimulation of both serine phosphorylation and tyrosine autophosphorylation. In permeabilized cells, insulin receptor beta-subunit phosphorylation was increased after a 2-min exposure to phorbol 12-myristate 13-acetate (PMA) prior to applying the permeabilization/phosphorylation step, while it was inhibited by chronic treatment with PMA leading to protein kinase C (PKC) down modulation. The PKC specific inhibitor, GF109203X, strikingly reduced basal and insulin-enhanced phosphorylation of insulin receptor beta-subunit in permeabilized cells, but failed to exert any effect with isolated receptors. Labelling of glycogen from [U-14C]glucose determined 1 h after a 10-min transitory exposure to insulin and/or modulators of PKC activity showed that PMA prevented insulin glycogenic response, whereas GF109203X was ineffective. Thus, although not directly responsible for insulin receptor serine phosphorylation in cultured foetal hepatocytes, PKC physiologically regulates this process which may inhibit insulin receptor tyrosine kinase activity. This regulation is independent of the antagonistic effect of PMA-activated PKC on insulin glycogenic response.
    [Abstract] [Full Text] [Related] [New Search]