These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of insulin-like growth factor system components by osteogenic protein-1 in human bone cells.
    Author: Knutsen R, Honda Y, Strong DD, Sampath TK, Baylink DJ, Mohan S.
    Journal: Endocrinology; 1995 Mar; 136(3):857-65. PubMed ID: 7532581.
    Abstract:
    Bone morphogenetic proteins (BMPs) have the unique ability to convert mesenchymal cells into matrix-producing osteoblasts. To understand the mechanism(s) by which a BMP produces a multitude of effects on bone cells, we examined the effects of recombinant human osteogenic protein (OP)-1 (referred to as BMP-7) on the insulin-like growth factor (IGF) regulatory system, an important growth factor system in bone. After 48 h of treatment, OP-1 increased the level of IGF-II (3- and 2-fold, respectively, at 100 ng/ml) in the conditioned medium (CM) of SaOS-2 and TE85 human osteosarcoma cells with osteoblastic characteristics, whereas IGF-I levels were low to undetectable in the CM of either cell type. OP-1 treatment had no significant effect on the messenger RNA (mRNA) level for type 1 and type 2 IGF receptors. In TE85 and SaOS-2 cells, 100 ng/ml OP-1 increased the level of IGF binding protein (BP)-3 more than 10-fold, decreased the IGFBP-4 level by 50%, and increased the level of the 29-32.5 kDa IGFBP-5 3-fold in the CM as determined by analysis with Western ligand blot, Western immunoblot, and RIA. The effect of OP-1 on IGFBP production was time and dose dependent. The OP-1 induced changes in the levels of IGFBPs were associated with decreased IGFBP-3 and -5 protease activity (29% and 71%, respectively) and proportional changes in IGFBP mRNA levels. OP-1 increased the level of IGFBP-3 mRNA (2- and 10-fold, respectively, after 4 and 24 h of treatment at 100 ng/ml) and of IGFBP-5 mRNA (more than 5-fold after 24 h of treatment) but decreased the level of IGFBP-4 mRNA (> 50% after 24 h at 100 ng/ml). OP-1 treatment had no effect on IGFBP-4 protease activity. These results collectively demonstrate that OP-1 can act locally by modulating the IGF regulatory system, suggesting that the mitogenic/differentiative effect of OP-1 on human bone cells may in part be mediated via IGF-II by increasing its secretion, and by regulating the balance between the stimulatory (e.g. IGFBP-5) and inhibitory (e.g. IGFBP-4) classes of IGFBPs both at the level of production (mRNA) and at the level of degradation but not by up-regulating the IGF receptor.
    [Abstract] [Full Text] [Related] [New Search]