These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatase inhibitors potentiate adrenergic-stimulated cAMP and cGMP production in rat pinealocytes.
    Author: Ho AK, Chik CL.
    Journal: Am J Physiol; 1995 Mar; 268(3 Pt 1):E458-66. PubMed ID: 7534989.
    Abstract:
    The role of phosphoprotein phosphatase in the regulation of adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) accumulation in rat pinealocytes was investigated using the three phosphatase inhibitors calyculin A, tautomycin, and okadaic acid. Calyculin A (0.1 microM) was found to enhance the isoproterenol- and norepinephrine-stimulated cAMP accumulation six- and threefold, respectively, whereas tautomycin and okadaic acid were less effective. The effect of calyculin A was rapid (within 5 min) and persisted in the presence of phosphodiesterase inhibition. However, in contrast to protein kinase C activation or intracellular calcium elevation, the phosphatase inhibitors were less effective in potentiating the cAMP response stimulated by forskolin or cholera toxin, and their effects were not blocked by calphostin C or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. The adrenergic-stimulated cGMP response was also less sensitive to the phosphatase inhibition. Therefore, our results suggest that 1) the adrenergic-stimulated cAMP signal is subjected to the tonic inhibition by phosphoprotein phosphatase; 2) phosphatase inhibitors enhance cAMP synthesis through their actions at the receptor level; and 3) the cAMP signal is more sensitive to the regulation by phosphorylation than cGMP in rat pinealocytes.
    [Abstract] [Full Text] [Related] [New Search]