These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular characterization of immunoreactivities of peptides derived from chromogranin A (GE-25) and from secretogranin II (secretoneurin) in human and bovine cerebrospinal fluid. Author: Kirchmair R, Benzer A, Troger J, Miller C, Marksteiner J, Saria A, Gasser RW, Hogue-Angeletti R, Fischer-Colbrie R, Winkler H. Journal: Neuroscience; 1994 Dec; 63(4):1179-87. PubMed ID: 7535395. Abstract: Chromogranin A and secretogranin II are members of the so-called chromogranins, the acidic proteins stored in neuroendocrine large dense-core vesicles. We characterized chromogranin A and secretogranin II immunoreactivities in cerebrospinal fluid by radioimmunoassays using synthetic peptides derived from these components (GE-25 for chromogranin A and secretoneurin for secretogranin II). In lumbar cerebrospinal fluid, high levels (more than 1000 fmol/ml) of these two components were found, whereas in ventricular cerebrospinal fluid the secretoneurin levels were relatively low. The cerebrospinal fluid/serum ratio for secretoneurin was close to 170. High-performance liquid chromatography revealed that in both cerebrospinal fluid and extracts from human brain secretoneurin was the predominant immunoreactive component. In cerebrospinal fluid chromogranin A immunoreactivity was present as intermediate-sized peptides with little intact chromogranin A and free GE-25 peptide. In human brain samples smaller peptides including GE-25 were more predominant. Analogous findings for secretoneurin and chromogranin A were obtained for bovine brain samples. We can conclude that chromogranins are present in cerebrospinal fluid in concentrations much higher than those of classical neuropeptides also stored in large dense-core vesicles. Therefore, their degree of proteolytic processing can be analysed with small samples of cerebrospinal fluid. A possible disturbance of proteolytic processing in large dense-core vesicles in various pathological conditions can now be discovered.[Abstract] [Full Text] [Related] [New Search]