These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reinnervation by axon collaterals from single facial motoneurons to multiple muscle targets following axotomy in the adult guinea pig. Author: Ito M, Kudo M. Journal: Acta Anat (Basel); 1994; 151(2):124-30. PubMed ID: 7535503. Abstract: To study the process of recovery from facial palsy experimentally, the location of cranial motoneurons supplying the posterior belly of the digastric muscle (PDG) and the extratemporal portion of the facial nerve trunk was examined in a double-labeling paradigm using two retrograde tracers in the adult guinea pig of which the facial nerve had been surgically injured. In different stages after the induced facial palsy had recovered functionally (4-13 weeks after the surgical operation), wheat germ-agglutinated horseradish peroxidase (WGA-HRP) was injected into the PDG and Fluoro-Ruby (FR) was applied to the proximal cut end of the extratemporal portion of the facial nerve trunk. Distribution of neurons retrogradely labeled with WGA-HRP and/or FR was plotted in the brainstem and compared with that of the controls. In the intact cases, HRP-labeled neurons were restrictedly seen in the accessory facial nucleus (Acs7), while FR-labeled neurons were found within the main facial nucleus (FMN). In the axotomized cases: (1) HRP-labeled neurons were seen diffusely in the Acs7 as well as in the FMN, where normal myotopical representation no longer seemed to be maintained. (2) FR-labeled neurons were also observed diffusely in the FMN and the Acs7. (3) A considerable number of neurons were doubly labeled with WGA-HRP and FR in both the Acs and the FMN in cases with shorter survival periods (4-7 weeks), but not in cases with longer survival periods (12-13 weeks). Thus, new findings show that connections are temporarily maintained by single, facial motoneurons with axon collaterals to multiple muscle targets in adult mammals.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]