These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lung growth in hypobaric normoxia, normobaric hypoxia, and hypobaric hypoxia in growing rats. I. Biochemistry. Author: Sekhon HS, Thurlbeck WM. Journal: J Appl Physiol (1985); 1995 Jan; 78(1):124-31. PubMed ID: 7536189. Abstract: Adaptive changes in cellular and connective tissue components of the lung after chronic exposure to reduced ambient oxygen and/or pressure were studied. Four-week-old male Sprague-Dawley rats were randomly divided into five groups (n = 12 each): 1) general control, room air (GC); 2) hypobaric normoxic; 3) normobaric hypoxic; 4) hypobaric hypoxic; and 5) weight-matched control, restricted food intake (WMC; weight matched to hypobaric hypoxic animals). Lung growth (lung weight and DNA, RNA, protein, hydroxyproline, and desmosine contents) diminished in WMC compared with GC. Somatic growth decreased in hypobaric and normobaric hypoxic rats compared with GC. Lung weight; DNA, RNA, protein, hydroxyproline, and desmosine contents; and RNA/DNA, protein/DNA, and desmosine/DNA ratios increased in both hypobaric and normobaric hypoxic rats compared with WMC. Hydroxyproline and desmosine contents and the hydroxyproline/DNA ratio were significantly higher in hypobaric than normobaric hypoxic rats. Hypobaric normoxia caused a slight somatic growth reduction, but biochemical parameters of lung growth remained unaffected. In conclusion, in growing animals, despite inhibition of lung growth due to reduced food consumption, accelerated lung growth in hypobaric or normobaric hypoxia occurs by hyperplastic and hypertrophic changes. Hypobaric normoxia does not affect lung growth, but connective tissue proteins accumulate slightly more in hypobaric hypoxia than in hypoxia alone.[Abstract] [Full Text] [Related] [New Search]