These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The MATK tyrosine kinase interacts in a specific and SH2-dependent manner with c-Kit. Author: Jhun BH, Rivnay B, Price D, Avraham H. Journal: J Biol Chem; 1995 Apr 21; 270(16):9661-6. PubMed ID: 7536744. Abstract: We have cloned a protein tyrosine kinase, MATK, which is expressed abundantly in megakaryocytes and the brain. We investigated whether MATK participates in the c-Kit ligand/stem cell factor (KL/SCF) signaling pathway in the megakaryocytic cell line CMK. After KL/SCF stimulation, five major proteins of molecular masses of 145, 113, 92, 76, and 63 kDa were rapidly and transiently tyrosine-phosphorylated in a time-dependent manner, peaking within 5 min, and returning to basal levels within 60 min. To study the role of MATK in the KL/SCF signaling pathway, glutathione S-transferase (GST) fusion proteins containing SH2 and SH3 domains of MATK were cloned, expressed in Escherichia coli, and purified. MATK-SH2, but not MATK-SH3, precipitated the tyrosine-phosphorylated c-Kit (molecular mass of 145 kDa) in KL/SCF-stimulated CMK cells. Other GST fusion proteins containing the SH2 domain of p85 of phosphatidylinositol 3-kinase, phospholipase C gamma-1, and ras-GAP also precipitated c-Kit. The tyrosine-phosphorylated c-Kit was co-immunoprecipitated with anti-MATK and anti-p85 antibodies in KL/SCF-stimulated CMK cells, but not in granulocyte-macrophage colony stimulating factor or interleukin-6-stimulated cells, suggesting receptor specificity. These results indicate that MATK associates with the c-Kit receptor following specific stimulation by KL/SCF via its SH2 domain and likely participates in transduction of growth signals induced by this cytokine in megakaryocytes.[Abstract] [Full Text] [Related] [New Search]