These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low-conductance anion channel activated by cAMP in teleost Cl- -secreting cells. Author: Marshall WS, Bryson SE, Midelfart A, Hamilton WF. Journal: Am J Physiol; 1995 Apr; 268(4 Pt 2):R963-9. PubMed ID: 7537471. Abstract: We studied characteristics and modulation of ion channels in primary cultures of opercular epithelium from the euryhaline marine killifish Fundulus heteroclitus. Primary cultures, 17-28 h old, retain mitochondria-rich Cl- cells identifiable by fluorescence microscopy. Cell-attached patches revealed frequent low-conductance 8.1 +/- 0.35 pS channels that usually became inactive on excision; high-conductance anion channels were not apparent. Ion substitution experiments demonstrated selectivity for Cl- over gluconate of 1:0.07. With addition of 1-isobutyl-3-methylxanthine (0.1 mM) and dibutyryladenosine 3',5'-cyclic monophosphate (1.0 mM) to the bath, incidence of the channel increased from 35.3 to 61.9% of total patches (n = 156 and 21, respectively), and incidence of patches with multiple copies of the channel increased markedly from 2.2 to 38.5%. Epithelial Cl- transport was inhibited by mucosally added diphenylamine-2-carboxylic acid (1.0 mM) but not by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (0.1-1.0 mM). The anion channel was absent from cultured killifish corneal epithelium, a tissue that lacks Cl- cells. We conclude that a low-conductance anion channel of Cl- cells, likely in the apical membrane, may account for adenosine 3',5'-cyclic monophosphate-activated Cl- secretion by marine fish.[Abstract] [Full Text] [Related] [New Search]