These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition.
    Author: Pfaff M, McLane MA, Beviglia L, Niewiarowski S, Timpl R.
    Journal: Cell Adhes Commun; 1994 Dec; 2(6):491-501. PubMed ID: 7538018.
    Abstract:
    The inhibitory capacities of six different disintegrins and one related neurotoxin analogue for the binding of RGD-dependent integrins to either fibrinogen, vitronectin or fibronectin were compared in solid phase assays. Echistatin and flavoridin were the most active inhibitors for alpha V beta 3 and alpha 5 beta 1 integrins and moderately exceeded the activity of the natural protein ligands. The same disintegrins together with eristostatin, bitistatin and barbourin were also very potent inhibitors of fibrinogen binding to alpha IIb beta 3 integrin. For all three integrins, albolabrin showed the lowest affinity, but it still clearly exceeded that of synthetic GRGDS. However, assay conditions may determine these relative affinities, as shown for the alpha IIb beta 3 and alpha V beta 3 integrins when used either in immobilized or soluble form. For alpha IIb beta 3, however, a close correlation was found between KD values determined in platelet binding assays and the concentrations required for half maximal inhibition of three disintegrins. The inhibiting capacity of disintegrins in assays with purified integrins also correlated reasonably well with their inhibition of cell attachment to RGD-dependent protein substrates. However, sequence differences in the RGD loops of the various disintegrins may not fully account for the 20-100-fold difference in their binding capacities. This was particularly evident for echistatin and albolabrin, which differ in this region only by two conservative substitutions but have considerably different inhibitory activities. More remote regions of the disintegrins and alignment of disulfide bridges are therefore likely to contribute to their affinity and selectivity.
    [Abstract] [Full Text] [Related] [New Search]