These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activity-dependent regulation of a ribosomal RNA epitope in the chick cochlear nucleus.
    Author: Hyson RL, Rubel EW.
    Journal: Brain Res; 1995 Feb 20; 672(1-2):196-204. PubMed ID: 7538417.
    Abstract:
    Elimination of auditory nerve activity results in rapid metabolic changes, cell atrophy, and cell death in nucleus magnocellularis (NM), the cochlear nucleus of the chick. The transneuronal signals involved in the activity-dependent regulation of NM neurons are not well understood. One of the most rapid transneuronal effects is alteration in protein synthesis by NM neurons. Previous studies using an in vitro preparation of the brain stem auditory system suggested that up-regulation of protein synthesis in NM neurons requires the action of some trophic substance released by active auditory nerve fibers. Here, similar results were obtained when measuring changes in immunoreactivity using a monoclonal antibody (Y10B) that recognizes ribosomal RNA. This immunolabeling assay has advantages over the global protein synthesis assay in that it is not sensitive to possible changes in specific activity of the precursor pool or possible differences in the uptake of the labeled amino acids. Unilateral stimulation of the auditory nerve for 1 h resulted in greater immunolabeling of NM neurons on the stimulated side of the slice. This is consistent with previous in vivo results after unilateral deafferentation. Blockade of synaptic transmission by maintaining the slice in a low-Ca2+/high Mg2+ medium prevented the stimulation-induced difference in immunolabeling. Electrical stimulation of the postsynaptic NM neurons alone (antidromic stimulation, via electrical stimulation of NM neuron axons) did not result in greater immunolabeling. Rather, antidromically stimulated neurons tended to show lighter labeling. Thus, the transneuronal regulation of ribosomes in NM neurons appears to require some substance released from the active auditory nerve.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]